ANTI-TYROSINASE AND ANTI-OXIDANT POTENTIAL OF METHANOLIC EXTRACTS OF SELECTED Citrus bergamia AND Ficus carica PARTS

Hina Ilyas¹, Umar Hanif², Anser Ali¹, Zahid Hassan Tarar³, Hamza Javed⁴, Tehreem Tahir⁵, Muhammad Rafiq⁶*

DOI: https://doi.org/10.28941/pjwsr.v27i4.935

ABSTRACT

Tyrosinase is a key enzyme in melanogenesis. Its high activity is associated with increased pigmentation causing skin disorders like freckles, melasma and black spots. Therefore, search for new tyrosinase inhibitors is desirable.

In present study, methanolic (MeOH) extracts from leaves, fruit peel and pulp of *Citrus bergamia* (*C. bergamia*) and, leaves and fruit of *Ficus carica* (*F. carica*) were prepared which were further processed for fractional distillation using ethyl acetate (EA), n-hexane (*n*-Hx) and chloroform (CHCl₃) preparing total 20 extracts aiming to test their anti-tyrosinase potential, *in-vitro*. Our results confirmed that all *C. bergamia* and *F. carica* crude extracts showed significant anti-oxidant activity with IC₅₀ range of 384.2 ± 19.1 to 77.3 ± 10.0 µgmL⁻¹, collectively. Moreover, significant anti-tyrosinase activity for *C. bergamia* (IC₅₀ range = 4.1 ± 0.3 to 366.8 ± 36.5 µg mL⁻¹) and *F. carica* (IC₅₀ range = 156.5 ± 12.4 to 15.1 ± 2.9 µg mL⁻¹) was found . Interestingly, *C. bergamia* MeOH-EA peel and *C. bergamia* MeOH-EA leaves extracts showed IC₅₀ 4.1 ± 0.3 and 6.1 ± 1.2 µg mL⁻¹, respectively. Thus, *C. bergamia* MeOH-EA peel extract with lowest IC₅₀ value among all the tested extracts, is proposed as potent candidate to control tyrosinase rooted hyperpigmentation in future.

Keywords: Anti-tyrosinase, Anti-oxidant, C. bergamia, F. carica, Extraction.

Citation: Ilyas, H.; U. Hanif; A. Ali; Z. H. Tarar; H. Javed, T. Tahir; M. Rafiq. 2021. Anti-Tyrosinase and Anti-Oxidant Potential of Methanolic Extracts of Selected *Citrus bergamia* and *Ficus carica* Parts. Pak. J. Weed Sci. Res., 27(4): 443-450.

¹Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK)-Pakistan.

²Department of Medical Laboratory Technology, Riphah International University, Faisalabad, Pakistan..

³Soil and Water Testing Laboratory, Mandi Bahauddin, Pakistan.

⁴Department of Medical Laboratory Technology, Government College University, Faisalabad, Pakistan.

⁵Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan.

⁶Department of Physiology & Biochemistry, Cholistan University of Veterinary & Animal Sciences, Bahawalpur-63100, Punjab, Pakistan.

^{*}Corresponding author's email: rafiq@cuvas.edu.pk

INTRODUCTION

Melanin is an oligomeric pigment found in plants, fungi and humans (Surwase et al., 2013; Riley, 1997). It contributes in the skin, eves and hair pigmentation (Jimbow et al., 1976; Kim and Uyama, 2005). Moreover, melanin is also responsible for skin protection against ultra violet (UV) radiations. It absorbs UV rays and eliminates ROS (Costin et al., 2007; Solano, 2020). Despite its advantages, its abnormal accumulation result in hyperpigmentation contributing to esthetic problems including age spots, melasma and freckles.

Tyrosinase is a key enzyme contributing in melanogenesis (Okun et 1970). It involves L-3,4al., dihydroxyphenylalanine (L-DOPA) synthesis from L-tyrosine followed by rapid oxidation of L-DOPA to L-DOPA quinine, a melanin precursor (Fitzpatrick et al., 1979). Tyrosinase is also associated to certain neurodegenerative diseases i.e. Parkinson's disease (Asanuma et al., 2003; Xu et al., 1998). It is also reported to be involved in the browning of fruits and vegetables. Thus, to prevent fruit browning and unwanted pigment associated esthetic problems, effective tyrosinase inhibition is desirable (Robins, 2009).

Anti-oxidants have shown important role in controlling melanogenesis (Takahiro et al., 2011). ROS inhibitors can down-regulate UVmediated melanogenesis (Yasui and Sakurai, 2003). Therefore, anti-oxidants being ROS inhibitors are frequently used cosmetic industry to prevent in hyperpigmentation (Funasaka et al., 2000). Free radicals cause numerous degenerative disorders by interacting with biological molecules like lipid, protein, and DNA. Anti-oxidants are associated with several pharmacological activities including anti-aging, antimutagenicity, anti-carcinogenicity and skin whitening (Takahiro et al., 2011). One approach to control oxidative stress and to achieve skin whiting is the use of natural or synthetic anti-oxidants and tyrosinase inhibitors.

Multiple natural and synthetic potent tyrosinase inhibitors are already available (Kim and Uyama, 2005; Robins, 2009; Ali et al., 2019). However, safety concerns such as cytotoxicity offend the commercialization of most of the candidates. Therefore, search for safe and effective tyrosinase inhibitor is always desirable. To meet safety requirements, many researchers recommend the use of plant-based natural medical products (Tlili et al., 2011). Manv studies have been conducted using local plants to explore their important biological activities (Fatemeh et al., 2007; Khan et al., 2020; Rafiq et al., 2020; Shah et al., 2020; Naqvi et al., 2020) Thus, in present study we selected F. carica and C. bergamia two edible plants for the isolation of extracts and evaluation of their anti-tyrosinase and anti-oxidant activities, important to control tyrosinase rooted pigmentation.

MATERIALS AND METHOD Plant material and chemicals

F. carica and *C. bergamia* leaves and fruits were collected from Mirpur, AJK, Pakistan. Mushroom tyrosinase and L-DOPA were purchased from Sigma Aldrich.

Preparation of plant extracts

Selected parts of *F. carica* (leaves and fruit) and C. bergamia (leaves, fruit peel and pulp) were cleaned, dried and ground. The powdered samples were dipped in methanol 1:10 (g:mL) ratio for 15 days with gentle shaking twice per day. Later, sample was filtered and solvent was evaporated by using rotary evaporator at 36°C (Fig. 1). The obtained MeOH-crude extracts were further air dried at room temperature and processed for fractional distillation in n-hexane (*n*-Hx), ethyl acetate (EA) and chloroform (CHCl₃) 1:1 (µg:mL) ratio separately to obtain respective extracts for evaluation of anti-tyrosinase activity.

Fig. 1: Extraction steps for *C. bergamia* (a-h) and *F. carica* (i-n). *C. bergamia* leaves (a) fresh (b) dried and (c) MeOH filtrate for extraction are shown. *C. bergamia* fruit (d) fresh (e) dried pulp and (f) MeOH pulp filtrate for extraction while (g) dried fruit peel and (h) MeOH peel filtrate for extraction are shown. *F. carica* leaves (i) fresh (j) dried and (k) MeOH leaves filtrate for extraction are shown. *F. carica* fruit (l) dried (m) powder and, (n) MeOH fruit filtrate for extraction are shown.

Tyrosinase assay

Tyrosinase assay was performed as previously reported (Ali *et al.*, 2019). Briefly, phosphate buffer, mushroom tyrosinase and extract solutions were mixed and sample was incubated for 10 min. Later, L-DOPA was added, incubated again (20 min at 25 °C) and change in absorbance was checked at 450 nm.

Anti-oxidant activity

To test anti-oxidant activity, 2,2diphenyl-1-picrylhydrazyl (DPPH) assay was performed by following Kanwal et al. (2015) with slight modifications. DPPH stock solution Briefly, was prepared by dissolving 24 mg DPPH in 100 mL methanol and OD was adjusted 0.98 ± 0.02 at 490 nm to get working solution. Plant extract was mixed with DPPH working solution, incubated at 20 °C in dark and absorbance was noted at 490 nm to calculate scavenging percentage (%) as given below.

Scavenging (%) = (Control absorbance - Sample absorbance)/(Control absorbance) x 100 Sample = Test sample (serial dilution) along with DPPH working solution,

Control = DPPH working solution along with methanol

Finally, IC_{50} from scavenging (%) was calculated to compare scavenging potential of tested extracts.

RESULT

In present study, methanolic (MeOH) extracts from *C. bergamia* (leaves, fruit peel and pulp) and *F. carica* (leaves and fruit) were prepared aiming to evaluate their anti-oxidant and anti-tyrosinase activities. Moreover, extracts were further processed for fractional distillation using ethyl acetate (EA), n-hexane (*n*-Hx) and chloroform

 $(CHCl_3)$ preparing total 20 extracts and anti-tyrosinase activity was analysed further.

Anti-tyrosinase activity

Our results confirmed that *C.* bergamia leaves MeOH-crude, MeOH-n-Hx, MeOH-EA and MeOH-CHCl₃ extracts showed IC₅₀ values as 151.3, 24.6, 6.1 and 12.9 µg mL⁻¹, respectively (Table 1).

Table 1: Anti-tyr	osinase activi	ty of C.	bergamia	leaves	extracts.
-------------------	----------------	----------	----------	--------	-----------

Extract of <i>C. bergamia</i> leaves	Tyrosinase inhibition IC ₅₀ ± SEM (μg mL ⁻¹)
MeOH-crude	151.3 ± 29
MeOH- <i>n</i> -Hx	24.6 ± 1.1
MeOH-EA	6.1 ± 1.2
MeOH-CHCl ₃	12.9 ± 1.9

C. bergamia peel MeOH-n-Hx, MeOH-EA and MeOH-CHCl₃ extracts showed tyrosinase inhibition IC₅₀ values as 142.7, 4.1 and 35.2 μ g/mL, respectively (Table 2).

Table 2: Anti-tyrosinase activity of *C. bergamia* fruit peel extracts.

	5
Extract of	Tyrosinase inhibition
<i>C. bergamia</i> peel	$IC_{50} \pm SEM (\mu g m L^{-1})$
MeOH-crude	*nd
MeOH- <i>n</i> -Hx	142.7 ± 21.2
MeOH-EA	4.1 ± 0.3
MeOH-CHCl₃	35.2 ± 5.2
*not determined	

Moreover, *C. bergamia* pulp MeOH-crude, MeOH-EA and MeOH-CHCl₃ extracts showed IC_{50} values for anti-tyrosinase activity as 366.8, 17.4 and 10.6 µg/mL, respectively (Table 3). However, IC_{50} for *C. bergamia* pulp MeOH-*n*-Hx was not determined.

Table 3: Anti-tyrosinase activity of *C. bergamia* fruit pulp extracts.

Extract of <i>C. bergamia</i> pulp	Tyrosinase inhibition IC ₅₀ ± SEM (μ g mL ⁻¹)
MeOH-crude	366.8 ± 36.5
MeOH- <i>n</i> -Hx	*nd
MeOH-EA	17.4 ± 2.6
MeOH-CHCl ₃	10.6 ± 1.5

*not determined

Second plant, *F. carica* leaves and fruit were also tested for possible anti-tyrosinase activity. *F. carica* leaves MeOH-crude, MeOH-n-Hx, MeOH-EA and MeOH-CHCl₃ extracts showed IC₅₀ values as 156.2, 123.3, 127.9 and 16.7 µg mL⁻¹, respectively (Table 4).

Table 4: Anti-tyrosinase activity of *F. carica* leaves extracts.

Extracts F. carica leaves	Tyrosinase inhibition IC50 ± SEM (µg mL ⁻¹)	
MeOH-crude	156.2 ± 12	
MeOH- <i>n</i> -Hx	123.3 ± 24.4	
MeOH-EA	127.9 ± 6.3	
MeOH-CHCl ₃	16.7 ± 3.3	

Moreover, *F. carica* fruit MeOH-crude, MeOH-*n*-Hx, MeOH-EA and MeOH-CHCl₃ extracts showed IC₅₀ values as 132.0, 141.3 and 105.7 and 15.1 μ g mL⁻¹, respectively (Table 5).

Table 5: Anti-tyrosinase activity of *F. carica* fruit extracts.

Extract of <i>F. carica</i> fruit	Tyrosinase inhibition IC₅₀ ± SEM (µg mL⁻¹)
MeOH-crude	132.0 ± 10.5
MeOH- n -Hx	141.3 ± 7.1
MeOH-EA	105.7 ± 15.7
MeOH-CHCl₃	15.1 ± 2.9

Interestingly, F. carica fruit MeOH-crude, C. bergamia leaves MeOH-n-Hx, C. bergamia peel MeOH-EA and C. bergamia pulp MeOH-CHCl₃ extracts showed highest anti-tyrosinase activity from all MeOH-crude, MeOH-n-Hx, MeOH-EA and MeOH-CHCl3 extracts, respectively (Table 6).

Table.6 Anti-tyrosinase activity trend with respect to their solvents.

Extract type	Trend in tyrosinase inhibition
MeOH-crude	<i>F. carica</i> fruit MeOH-crude > <i>C. bergamia</i> leaves MeOH-crude > <i>F. carica</i> leaves MeOH-crude > <i>C. bergamia</i> pulp MeOH-crude
MeOH- <i>n</i> -Hx	<i>C. bergamia</i> leaves MeOH- <i>n</i> -Hx > <i>F. carica</i> leaves MeOH-n-Hx > <i>F. carica</i> fruit MeOH-n-Hx > <i>C. bergamia</i> peel MeOH- <i>n</i> -Hx
MeOH-EA	<i>C. bergamia</i> peel MeOH-EA > <i>C. bergamia</i> leaves MeOH-EA > <i>C. bergamia</i> pulp MeOH-EA > <i>F. carica</i> fruit MeOH-EA > <i>F. carica</i> leaves MeOH-EA
MeOH-CHCl ₃	<i>C. bergamia</i> pulp MeOH-CHCl ₃ > <i>C. bergamia</i> leaves MeOH-CHCl ₃ > <i>F. carica</i> fruit MeOH-CHCl ₃ > <i>F. carica</i> leaves MeOH-CHCl ₃ > <i>C. bergamia</i> peel MeOH-CHCl ₃

Anti-oxidant activity

All the extract showed antioxidant activity with potential as tabulated below (Table 7). The C. bergamia MeOH-crude leaves, pulp and peel showed anti-oxidant IC₅₀ values as

192.7, 384.2 and 125.9 µg mL⁻¹, respectively. However, F. carica leaves and fruit MeOH-crude extracts showed anti-oxidant IC50 values as 300.3 and 77.3 μ g mL⁻¹, respectively (Table 7).

Table 7: Anti-oxidant activity MeOH-crude extracts.

Extract	DPPH activity IC₅₀ ± SEM (µg mL ⁻¹)
C. bergamia leaves MeOH-crude	192.7 ± 28
C. bergamia pulp MeOH-crude	384.2 ± 19
<i>C. bergamia</i> peel MeOH-crude	125.9 ± 4
F. carica leaves MeOH-crude	300.3 ± 29
F. carica fruit MeOH-crude	77.3 ± 10

Thus, tested samples showed anti-oxidant as well as anti-tyrosinase activity, important for pigmentation and cosmetic industry.

DISCUSSION

In present study, we prepared methanolic (MeOH) extracts from C. bergamia (leaves, fruit peel and pulp) and F. carica (leaves and fruit) which were further processed for fractional distillation using ethyl acetate (EA), nhexane (n-Hx) and chloroform $(CHCl_3)$ (total 20 extracts) aiming to inhibit important tyrosinase activity for tyrosinase rooted pigmentation.

Later, anti-oxidant activity of all MeOH-crude extracts, reported to be associated with tyrosinase inhibition was evaluated. Interestingly, all the

test samples were found significant anti-oxidant. Our results confirmed that and all the MeOH-crude C. bergamia leaves, fruit peel, pulp and F. carica leaves and fruit crude extracts showed anti-oxidant activity with IC₅₀ range of 384.2 ± 19 to $77.3 \pm 10 \ \mu g$ mL⁻¹ collectively. Our results confirmed the previous finding that reported antioxidant properties of Citrus peel oil and F. carica (Tsai et al., 2017; Patil et al., 2009). F. carica leaves are enrich with flavonoids, sesquiterpenes, tannins. alkaloids and saponins (Tchombe and Louajri, 2015) responsible for various pharmacological activities i.e. antioxidant, anti-cancer, anti-viral, antibacterial and anti-inflammatory activities (Badgujar et al., 2014). Moreover, citrus fruits peel is used in Chinese medicines. In addition, citrus peel essential oil is shown to have mixture of bioactive volatile compounds like monoterpene hydrocarbons. Essential oils are used for aromatherapy and for certain psychological and physical conditions (Susan, 1996). Interestingly, antioxidant properties are reported to have close association with tyrosinase rooted melanin inhibition (Takahiro et al., 2011). Anti-oxidants such as N-acetyl cysteine are reported to abolish UVBinduced a-melanocyte stimulating hormone (a-MSH) and to study the association of ROS with melanin synthesis (Funasaka et al., 2000). Elevations of endogenous anti-oxidants shown to suppress melanin are production (Kameyama et al., 1996) and ROS are reported to contribute in melanin synthesis (Ali et al., 2019; Chou et al., 2013; Yanase et al., 2001). The cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) or mitogen-activated protein kinase (MAPK), melanocortin 1 receptor (MC1R), and microphthalmiaassociated transcription factor (MITF), important melanogenic signaling are reported to down regulated with the ROS suppression which subsequently reduce tyrosinase, critical for melanin synthesis (Panich, 2011; Chou *et al.,* 2010; Yanase et al., 2001).

All 20 test F. carica and C. bergamia extracts showed various levels of anti-tyrosinase activity (Table 1 -Table 5). Anti-tyrosinase activity trend among all tested extracts was as С. С. *bergamia* peel MeOH-EA > bergamia leaves MeOH-EA С. > bergamia pulp MeOH-CHCl₃ > С. bergamia leaves MeOH-CHCl₃ > F. carica fruit MeOH-CHCl₃ > *F. carica* leaves MeOH-CHCl₃ > C. bergamia pulp MeOH-EA > C. bergamia leaves MeOH-n-Hx >

C. bergamia peel MeOH-CHCl₃ > F. carica fruit MeOH-EA > F. carica leaves MeOH-n-Hx > F. carica leaves MeOH-EA > F. carica fruit MeOH-crude > F. carica fruit MeOH-n-Hx > C. bergamia peel MeOH-n-Hx > C. bergamia leaves MeOH-crude > F. carica leaves MeOHcrude > C. bergamia pulp MeOH-crude.

Anti-oxidants and tyrosinase inhibitors are critical for melanin inhibition. Inhibitors can be achieved diverse synthetic from sources. However, their safety issues prevent commercialization. Therefore, their isolation of extracts from natural sources is desirable. Thus, we selected leaves and fruits of edible F. carica and C. bergamia for the isolation of extracts. Extracts from both selected plants showed anti-oxidant as well as antityrosinase activity. Interestingly, С. bergamia MeOH-EA peel extract showed highest tyrosinase inhibition (IC₅₀) 4.1 \pm 0.3 µg/mL among all tested extracts proposing it most potential candidate to control tvrosinase rooted hyperpigmentation.

CONCLUSION

Present study confirmed that all C. bergamia and F. carica tested MeOH crude extracts had significant antioxidant and anti-tyrosinase activities. Moreover, crude extracts processed for fractional distillation i.e EA, n-Hx and CHCl₃ also showed potent tyrosinase inhibition, in-vitro. However, С. bergamia MeOH-EA peel extract showed highest tyrosinase inhibition among all tested extracts out-reaching as most potent candidate for tyrosinase rooted hyperpigmentation in future.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise. **ACKNOWLEDGMENTS** This work was supported by MUST, Mirpur, AJK, Pakistan.

REFERENCES

- Ali, A., Z. Ashraf, M. Rafiq, A. Kumar, F. Jabeen, G.J. Lee and E.H. Choi. 2019. Novel amide derivatives as potent tyrosinase inhibitors; *in vitro*, *in vivo* antimelanogenic activity and computational studies. Med. Chem., 15 (7): 715-728.
- Asanuma, M.I., Miyazaki and N. Ogawa. 2003. Dopamine-or L-DOPAinduced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox. Res., 5 (3): 165-176.
- Badgujar, S.B., V.V. Patel, A.H. Bandivdekar and T. Raghunath. 2014. Mahajan traditional uses, phytochemistry and pharmacology of *Ficus carica*: A review. Pharm. Biol., 52: 1487-1503.
- Chou, S.T., W.L. Chang, C.T. Chang, S. L. Hsu, Y.C. Lin and Y. Shih. 2013. Cinnamon cassia essential oil inhibits a-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int. J. Mol. Sci., 14 (9): 19186-201.
- Chou, T.H., H.Y. Ding, W.J. Hung and C.H. Liang. 2010. Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol., 1: 742–750.
- Costin, G.E., and V.J. Hearing. 2007. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB. J., 21 (4): 976-994.
- Fatemeh, B.K., Z. Eskandar and H.M. Alizadeh. 2007. Study on Diclofopmethyl resistance in wild oat (Avena ludoviciana durieu); a comparison between the whole plant and seed bioassay. Pak. J. Weed. Sci. Res., 13 (1-2): 69-81.
- Fitzpatrick, T.B., G. Zabo, M. Seiji and W. C. Qoevedo. 1979. Dermatology in general medicine, McGraw.Hill Book Co. New York. pp. 131-163.
- Funasaka, Y., M. Komoto and M. Ichihashi. 2000. Depigmenting

effect of atocopheryl ferulate on normal human melanocytes. Pigment Cell Res.,13: 170-174.

- Jimbow, K., W.C. Quevedo Jr, T.B. Fitzpatrick and G. Szabo. 1976. Some aspects of melanin biology: 1950–1975. J. Invest. Derma., 67 (1): 72-89.
- Kameyama, K., C. Sakai, S. Kondoh, K. Yonemoto, S. Nishiyama, M. Tagawa and D. Bucks. 1996. Inhibitory effect of magnesium Lascorbyl-2-phosphate (VC-PMG) on melanogenesis *in vitro* and *in vivo*. J. Am. Acad. Dermatol., 34 (1): 29-33.
- Kanwal, R., M. Arshad, Y. Bibi, S. Asif, and S.K. Chaudhari. 2015. Evaluation of ethnopharmacological and anti-oxidant potential of *Zanthoxylum armatum* DC. J. Chem., 1: 1-8.
- Khan, I.H., and A. Javaid. 2020. Antifungal activity of leaf extract of cannabis sativa against Aspergillus flavipes. Pak. J. Weed. Sci. Res., 26 (4): 447-453.
- Kim, Y.J., and H. Uyama. 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life. Sci., 62 (15): 1707-1723.
- Naqvi, S.F., I.H. Khan and A. Javaid. 2020. Hexane soluble bioactive components of chenopodium murale STEM. Pak. J. Weed. Sci. Res., 26 (4): 425-432
- Okun, M.R., L.M. Edelstein, G. Hamada, B. Donnellan, and N. Or. 1970. The role of peroxidase vs. the role of tyrosinase in enzymatic conversion of tyrosine to melanin in melanocytes, mast cells and eosinophils. J. Invest. Derma., 55 (1): 1-12.
- Panich, M.Y. 2011. Antioxidant defense and UV-induced melanogenesis: implications for melanoma prevention, current management of malignant melanoma. ISBN: 978-953-307-264-7.
- Patil, V.V., R.B. Pimpirikar and V.R. Patil. 2009. Pharmacognostical studies and evaluation of anti-

inflammatory activity of *Ficus bengalensis Linn*. J Young Pharm., 1(1): 49-53.

- Rafiq, M., A. Shoaib and A. Javaid. 2020. GC-MS analysis of sonchus asper root extract for identification of fungicidal compounds against rhizoctonia solani. Pak. J. Weed. Sci. Res., 26 (3): 267-274.
- Riley, P.A. 1997. Melanin. Int. J. Biochem. Cell. bio. 29 (11): 1235-1239.
- Robins, A.H. 2009. Biological perspectives on human pigmentation. Cambridge Press. USA. pp. 1-187.
- Solano, F. 2020. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 25(7): 1537.
- Shah, H., H. Bibi, A. Hazrat and K. Sher. 2020. Ethnobotanical uses of medicinal plants in Tehsil Utman Khel District Bajaur Khyber Pakhtunkhwa Pakistan. Pak. J. Weed. Sci. Res., 26(3): 287-298.
- Susan, C. 1996. Essential oils; Aurum Press: London.
- Surwase, S.N., S.B. Jadhav, S.S. Phugare and J.P. Jadhav. 2013. Optimization of melanin production by *Brevundimonas* sp. SGJ using response surface methodology. 3 Biotech, 3(3): 187-194.
- Takahiro, F., A. Hisae and K. Ken. 2010. Anti-oxidant property of fullerene is effective in skin whitening. J. Am. Acad. Dermatol., 62: 54.
- Tchombe, L.N., and A. Louajri. 2015. Therapeutic effects of *Ficus carica* leaves: A brief review. ARPN J. Sci. Technol., 5: 37-41.
- Tlili, N., N. Nasri, A. Khaldi, S. Triki and S. Munné-Bosch. 2011. Phenolic compounds, tocopherols, carotenoids and vitamin C of commercial caper. J. Food. Biochem., 35(2): 472-83.
- Tsai, M.L., C.D. Lin, K. Khoo, M.Y. Wang, T.K. Kuan, W.C. Lin and Y.Y. Wang. 2017. Composition and Bioactivity of Essential Oil from *Citrus grandis* (L.) Osbeck 'Mato Peiyu'Leaf. Molecules, 22(12): 2154.
- Xu, Y., A. H. Stokes, R. Jr. Roskoski and K. E. Vrana. 1998. Dopamine, in

the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J. Neurosci. Res., 54 (5): 691-697.

- Yanase, H., H. Ando, M. Horikawa, M. Watanabe, T. Mori and N. Matsuda. 2001. Possible involvement of ERK 1/2 in UVA induced melanogenesis in cultured normal human epidermal melanocytes. Pigment. Cell. Res., 14(2): 103-9.
- Yasui, H., and H. Sakurai. 2003. Agedependent generation of reactive oxygen species in the skin of live hairless rats exposed to UVA light. Exp. Dermatol., 12: 655–661.